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1 INTRODUCTION 

Much of the initial research on FRP plating was on FRP pultruded plates adhesively bonded to 
the tension face of reinforced concrete (RC) beams or slabs. This form of retrofitting tends to 
debond at early strains (Oehlers and Seracino 2004, and Mohamed Ali M.S. et al 2006) and of-
ten debonds prior to yielding of the tension steel reinforcing bars and, consequently, prior to 
crushing of the concrete; this has led to the proviso in most guidelines that FRP retrofitted 
members should be treated as brittle  which may be true for externally bonded (EB) FRP pul-
truded tension face plates but it is certainly not the case with other types of FRP retrofitting. 

Some examples of ductile member behaviour of FRP retrofitted reinforced concrete mem-
bers are shown in Figs. 1 to 4  (Oehlers and Seracino 2004, Seracino et al 2007, Oehlers et al 
2007a). Figure 1 shows the hogging region of a reinforced concrete beam that has been 
strengthened with a pair of near surface mounted FRP strips (Liu et al 2006). The herringbone 
formation of cracks associated with intermediate crack (IC) debonding prior to failure can be 
clearly seen, as well as the pronounced deformation of the beam, and also at the support can be 
seen the horizontal cracks associated with concrete crushing or softening. These are all signs of 
member ductility of a reinforced concrete beam that has been strengthened with brittle FRP re-
inforcement. Figure 2 shows the hogging region of a beam which has been strengthened with a 
single FRP NSM strip on each side of the beam and because these NSM strips are closer to the 
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neutral axis it has allowed greater rotation and, hence, member ductility. A further example of 
ductility is shown in Fig. 3 where the concrete was wrapped with FRP. In the case of columns, 
FRP wrapping increases the ductility by confining the concrete. However in the case of beams, 
ductility is usually achieved because the thin FRP wrap allows high IC debonding strains. Fi-
nally, Fig.4 shows a reinforced concrete beam that has been strengthened by bolting FRP plates 
to the sides. Indications of member ductility are the large deformation as well as concrete crush-
ing at mid-span which is due to the ductile nature of the bolt connection. 

 
 
 

 
 
 
 
 

 
Figure 1. FRP NSM tension face plated beam 

Figure 2. FRP NSM side face plated bam 
 
 
 
 
 
 
 
 

 
Figure 3. FRP wrapped 
 

Figure 4. FRP plates bolted to RC beam 
 

Quantifying the ductility of reinforced concrete members has been an ongoing problem for the last fifty 
years (Barnard and Johnson 1965 and Wood 1968). Progress has been very slow and often relied on em-
pirically derived solutions (Baker, 1956, Sawyer 1964, Corley 1966, Mattock 1967, Priestley and Park 
1987, and Panagiotakos and Fardis 2001) and it is only recently that mathematical models have been de-
rived for quantifying the member ductility of unplated members (Fantilli et al 1998, and 2002, and De-
bernardi and Taliano 2002). It will be shown how this has led to a ductility model or ductility mechanism 
which is the subject of this paper and which has now been partially quantified (Oehlers et al 2005, Mo-
hamed Ali, M.S. et al 2007, Haskett et al 2007, and Oehlers et al 2007b) 
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2. ROTATIONAL REGIONS OF AN FRP PLATED RC BEAM 
 
A major reason for the difficulty in quantifying the member ductility of FRP plated reinforced 
concrete members is not the brittle nature of the FRP but because of the complex softening na-
ture of the concrete which is illustrated in Fig. 5 (Oehlers et al 2007b).  Path O-A is the ascend-
ing or first branch of the stress-strain relationship and is a material property. In contrast, path A-
D-C is the descending or second branch, the start of which is given by σstart at εstart, and which is 
a pseudo-material property that quantifies the shear-friction crushing wedge shown in Fig.4 and 
also in Fig.3 as well as in the eccentrically loaded prism in Fig. 6. 

 

Figure 5. Stress-strain behaviour of concrete 
 

Figure 6. Failure shear-friction wedge  
 
An FRP tension face plated beam is illustrated in Fig. 7 (Haskett et al 2007). This beam can 

be separated into two distinct regions: the non-hinge region, over the lengths z, where the con-
crete in compression is in the ascending or first branch of its stress/strain relationship O-A in 
Fig.5, as shown at the stress profile at  D in Fig. 7; and the hinge region where the concrete is 
crushing or softening that is the concrete is in its descending or second branch of its stress/strain 
relationship A-D-C in Fig. 5, as shown at the stress profile at E in Fig. 7. The non-hinge region, 
in which the stress in the concrete is increasing with load, can be analysed through standard 
procedures of equilibrium or compatibility. In contrast, the hinge region cannot be analysed di-
rectly through equilibrium and compatibility because concrete softening prevents any numerical 
simulation from directly working (Barnard and Johnson 1965, Wood 1968, and Oehlers 2006)   

 

 
Figure 7. Rotational regions of FRP plated beam 
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3. NON-HINGE ROTATION 
 

The behaviour of the non-hinge region in Fig. 7 is illustrated in Fig. 8 (Oehlers et al 2005, and 
Mohamed Ali M.S. et al 2007); the non-hinge region is defined as the region of the beam out-
side the concrete softening zone so that the concrete throughout the non-hinge region lies in the 
first branch O-A in Fig. 5. Standard numerical models such as finite element analyses or seg-
mental layered analyses (Oehlers et al 2005, and Mohamed Ali M.S. et al 2007) can be applied. 
The behaviour is complex as rotation is affected by slip between the reinforcement and the con-
crete as shown by the bond characteristics in Fig. 9 where it can be seen that the bond character-
istics can be idealised as bi-linear with a peak shear-stress of τmax and a slip δmax beyond which 
the interface shear stress is zero and that this characteristic can be applied to reinforcing bars, 
NSM strips and EB pultruded plates. The region where there is significant slip is referred to as 
the partial-interaction region in Fig. 8 such that the slip-strain ds/dx and the slip s are not zero. 
Beyond this region where the slip is minimal is referred to as the full-interaction region which in 
this case ds/dx = s = 0. The behaviour is further complicated by flexural cracking which requires 
interface slip and, furthermore, when the flexural cracks are closely spaced disturbed regions are 
formed where standard forms of compatibility cannot be applied. The rotation of the non-hinge 
region is particularly important when yielding of the steel reinforcement occurs before concrete 
softening as this will cause wide flexural cracks and subsequently large concentrations of rota-
tion at the flexural cracks where yielding has occurred. 

 

Figure 8. Partial-interaction non-hinge region 
 

Figure 9. Reinforcement partial-interaction bond characteristics 
 
 

4.  HINGE ROTATION 
 

The rotation of the hinge region in Fig. 7 is shown enlarged in Fig. 10 where it can be visualised 
as a rigid body rotation across a major crack (Mohamed Ali M.S. et al 2007). This rotation is 
limited by either concrete crushing in the softening zone or the rotation limit due to the slip ca-
pacity of the reinforcement (θfract)limit. Partial-interaction intermediate crack (IC) debonding the-
ory (Mohamed Ali M.S. et al 2006) can be applied directly to determine the slip at fracture of 
the FRP reinforcement or at IC debonding. For example, a lower bound to the slip at debonding 
is given by the slip capacity δmax in Fig. 9b so that the rotation limit in Fig. 10 is simply δmax/hFRP 
where hFRP is the distance of the FRP plate to the crack tip. IC debonding theory has also been 
used to determine the slip of the steel reinforcing bar δbar at fracture after strain hardening or at 
IC debonding (Haskett et al 2007). 

The major difficulty has always been in quantifying the rotational capacity of the concrete 
softening wedge, (θslide)limit in Fig. 10, and this has arisen because concrete softening has been 
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treated as a material property. However, recently concrete softening has been treated as a me-
chanical mechanism using shear-friction theory (Fantilli et al 1998, and 2002, Debernardi and 
Taliano 2002) and this has allowed a solution to be found (Mohamed Ali, M.S. et al 2007, 
Oehlers et al 2007b). Shear-friction theory has been used to quantify the force Psoft in the con-
crete wedge in Fig. 10 (and hence the effective stress σsoft in Fig. 5) of depth dsoft and length Lsoft 
and also to determine the angle of wedge α which has the weakest failure plane. This can be 
used in the analysis in Fig. 11 to determine the variation in curvature along the length Lsoft and, 
hence, the softening rotation. However, the limit to this rotation occurs when the wedge slides 
across the failure plane as in Fig. 6. From partial-interaction theory (Oehlers et al 2007b), an 
upper bound the slip across the interface C-D in Fig. 11 is simply the strain at the commence-
ment of softening, εstart in Fig. 5, times Lsoft. The slip capacity has to be determined from tests 
such as those in Fig. 12 where it can be seen that the slip capacity increases with confinement 
(Oehlers et al 2007). 

 

Figure 10 . Rigid body rotation of hinge 
 

Figure 11. Partial-interaction softening rotation limit  
 

Figure 12. Shear-friction slip capacity 
 
 
5. CONCLUSIONS 
 

A partial-interaction numerical model with partial-interaction limits has been described that 
simulates the beam rotation at all stages of loading and in particular when the concrete softens. 
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It has been shown that the limit to rotation due to the FRP reinforcement debonding is simple to 
quantify using well established intermediate crack debonding theory. This FRP plated RC beam 
ductility model will be used to develop design rules for the ductility of FRP plated members to 
help engineers design FRP plated members specifically for ductility as opposed to strength.  
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